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Structural Parameters of Inert Liquids
Part Il. Liquid Argon

S. N. BAGCHI

Physics Department, Concordia University, Montreal, Canada.
and

J. P. SUPPLE
Computel Systems Ltd., Ottawa, Canada.

(Received in final form; January 19, 1981)

The published data on the radial distribution functions (RDF) of liquid argon at various
temperatures and pressures have been analyzed on the basis of the Unified Kinematic Theory
of Diffraction (see Hosemann & Bagchi),! by the method developed before (Bagchi).?* The
neighbour statistics, their coordination numbers and other useful relevant structural param-
eters have been given in the tables. The experimentally obtained RDF curves are compared with
the theoretical curves. These figures also show the neighbour statistics. For comparison, one
sample of argon vapour near the saturated vapour curve is also analyzed in the same way.

i INTRODUCTION

In previous publications,* radial distribution functions, 4mr?g(r), of inert
liquids and of some simple liquid metals near their melting points as well as
of solid copper just below its melting point obtained by various authors from
X-ray and neutron diffraction studies have been analyzed by the method
developed by one of the authors (see Ref. 2), on the basis of the unified
kinematic theory of diffraction (see Ref. 1).

All the RDF curves reported in the literature had been obtained from the
inverse transform, Eq. (2), of the intensity function, Eq. (1), derived first by

1
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Zernike & Prins.’

4nrig(r) = 4nr’p + 8nr J u - i(u) sin(2mur) du 2
0
Here u(= |b| = 2 sin 6/1) is the magnitude of the reciprocal distance vector
b and r is the distance vector |x|. I is the average intensity function,

i) = 1@ — Nl (3)
Ni|fol?
and
g(r) = gor) + p = pity(r) 4)

il,(r) is the space-time average of the so-called pair-distribution function
n,(r); N(V) is the average number of atoms (or molecules) in the volume
V and p is the average macroscopic density. | fo|? is the structure factor,
| Dy |* denotes the Debye-Waller factor due to harmonic thermal vibrations
of atoms. The symbol """~ means that the corresponding function is averaged
over all directions of space.

It was assumed that the published data on RDF had been obtained by
taking necessary precautions and correcting adequately the observed
scattered intensity to get the intensity function I(u) and in calculating
its inverse transformation. Thus taking for granted that the function g(r)
1s accurate enough we have analyzed this function properly in order to get
reliable structural parameters, adequate enough to describe the space-time
averaged atomic distributions of the liquid state.

For a theoretically correct analysis of g(r) one must first be aware of the
inherent limitations of the Eq. (1) and of the physical meaning of g(r). But
this would be possible only when we have the most comprehensive kinematic
theory of diffraction which degenerates under special circumstances to all
the conventional theories like Laue-Bragg-Debye-Waller theory for
crystals, Zernike-Prins—-Debye-Menke theory for liquids and the theories
for gases and for amorphous matter developed by Debye, Warren, Guinier
and others. The principal aim of the Unified Kinematic Theory! was to
develop such a theory. This theory not only achieved this goal but also
revealed the connections between them and their domains of validity.
Moreover, it achieved something more. It explained the diffraction diagrams
of matter which cannot be classified so rigidly. In fact, this theory gives the
expression for the intensity function for matter of any kind on the basis of a
single fundamental concept, namely, that of generalized lattice. Optical
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diffraction patterns of many carefully prepared models, whose structural
parameters were known previously, quantitatively verified the conclusions
derived from this single unified theory (see Ref. 1).

In order to realize the significance of the structural parameters of the
liquids reported in this series of papers and to understand how they were
derived theoretically from the g(r)-function, it would be necessary to men-
tion here briefly the basic ideas of this unified theory. For a short exposition
of this theory and to know how it led to the method used in this series of
papers one should look to the Ref 2. The details of the actual evaluation of
these parameters were reported in the paper.3

I OUTLINE OF THE UNIFIED KINEMATIC THEORY OF
DIFFRACTION

For any substance the intensity function I(b) and its inverse transform
Q(x) are given by, in “ Kinematic Theory,” (cf. also Refs. 6-9),

I(b) = #p(x)- Fp(—x)

)
00) = 7 1(b) = px)+p(—x) = [ py)p(x + ¥,

The symbols %, # ! represent Fourier transformation and its inverse.
* represents the symbol of convolution product. Q(x) is denoted as the
convolution square of the density function p(x). Although Eq. (5) is exact,
it does not become useful unless one can express p in a convenient form.

In order to describe mathematically the density distribution of any
substance conveniently one must generalize the concept of the ideal lattice
and shall have to distinguish between a lattice and aggregates of lattices
which may form again a macro-lattice in which the building blocks are the
micro-lattices themselves. The fact that any substance is finite can also be
conveniently expressed in terms of the lattice by introducing the shape (or
stencil) function s(x) of Ewald.

We define a generalized lattice as an indefinitely extended point-structure
of weight unity with the origin at x = 0 by

Zy = Z Ix — x) (6)
k=—o
which satisfies the following three conditions.
A_2v _ A’N(®V)
v N)

a)

= constant for all values of V (6a)
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v is the volume of the lattice cell obtained by joining the lattice point located
at x, with its immediate neighbours by nonintersecting vectors.

b) A2V = NA%5, (N > 1) (6b)

This means that the volume of any lattice cell fluctuates independently.

¢) There is no correlation between cell volumes. The lattice cell them-
selves, however, are arbitrarily distorted and the shape and size of a lattice
cell varies in general from one lattice cell to the other quite arbitrarily.
One can therefore describe this generalised lattice, which is now statistically
homogeneous, with the help of only one normalized a priori statistics of the
cell volumes, H(v) = H,;,,,3(x). The intensity function of a structure
forming a generalized lattice is given by, (see Eq. (50) of Ref. 2),

Ib) = N(V)LI fol* — I Do 1 /o I°] + % IDol?| foI?Z* S| (M
where
M EM

z(x) = lim W Y Y ax — xp, + X))

M- o m=1k=1
S(b) = Fs(x); Do(b) = FA(X); Z(b) = Fz(x) | ®)
Ay(x) = A,X) = 5(x = Bx,)

BX) = fo * [2(x) * 3(x — Ax,)] - s(x)
[S]? is called the shape factor. (x) is Dirac’s delta function.
The distinctive and characteristic features of the diffraction pattern of
any substance forming a single generalised lattice depend principally on
the nature of the Z(b)-function.
Also, the distance statistics z(x) of the generalised lattice whose Fourier
transform is Z(b) is then given by

=Y Y Y Hypw® ©)

pr=—p2=—0 p3= - ®©

H, ., ,(x) denotes the normalized distribution function for the location of
the pth cell whose mean position is given by

X, = P4, + p,a, + p;a; (10)

pis are integers and a,’s are the average values of the three fundamental
lattice vectors.

il THE NEIGHBOUR STATISTICS AND RDF

In the case of “primitive” liquids, i.e., liquids containing no clusters, only
one spherically symmetric coordination statistics, namely, the statistics of
the first neighbour H,(r), is enough to locate the position of the pth neighbour.
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It is given by (cf. Ref. 2),

1 r?
Hy(r) = '(71:“_253/—2 exp[— ?il (11)

The statistics of the distribution of the pth neighbour H (r) is consequently
given by

1 § - ,,2 + 7,
0= g or] - | e - ] o

Here r, denotes the distance of the centroid of the pth atom and m the number
of convolutions by which it is reached from the origin with the help of
H (). The probability of the distribution of the nth neighbours is thus

H,(r) = 4nrig(r) = ) H(r) (13)

g(r) = z{x) = o(x'= 0) (13a)
The summation is to be taken over all the atoms belonging to the given
nth neighbour. It is determined by the coordination number C,; «2/2 = A’r
denotes the mean-square fluctuation in any direction of the first neighbour
statistics. It is evidently a measure of the dispersion of the distribution
function.

It might be noted that neither H (r) nor H,(r) are Gaussian functions and
the properties of H,(r), i.e. of g(r), is obtained by the convolution products of
H ,(r). Hence in order to obtain the (space-time averaged) distribution of
atoms one must deconvolute the given g(r)-function. Consequently, it is
obvious that the conventional method of analysis of RDF by putting Gaus-
sian functions at the humps of the g(r)-function is neither mathematically
nor physically correct.

For densely packed micro-clusters g(r)-function, being the convolution
square of the density function, would not differ significantly from that of a
homogeneous structure. Consequently, it can be analysed with sufficient
accuracy with the help of a single function H,(r) to give reliable structura
parameters. Actual inhomogeneities (at the atomic level) are revealed by
those properties like pressure and compressibility which are very sensitive
to the presence of clusters.

The presence of clusters can also be taken into account in the present
methodology. For this, we have to introduce the distribution function
P,(r) of the macro-lattice in which each of the clusters forms the building
block, the “cell-clement ”, of the macro-lattice.

It is interesting to note here that recently Baer!® obtained an expression
for g(r) similar to Eq. (13) from considerations of “structural diffusion”
of a locally fluctuating lattice and using Fokker-Planck equation. This
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concept of locally fluctuating lattice is very similar to that of generalised
lattice, but not adequate enough to describe even an arbitrary homogeneous
structure. A disordered lattice, from the point of view of dynamics, arises
from anharmonic thermal vibrations of the perfectly crystalline lattice. It is
known that anharmonic vibrations displace the equilibrium positions of
atoms which in its turn can break up the lattice and can create holes in
crystal lattice. Eventually, for large amplitudes of vibrations it gives rise to
the liquid and to the amorphous state of the substance. Diffusion process is
also really a result of the thermal motion. Unified Theory has taken account
of all these factors which give rise to a generalised (distorted) lattice. From
the standpoint of diffraction phenomena, unified theory shows that the
three states (crystal, liquid and gas) of a substance can be looked upon as
that of single generalised lattice structure. Holes are nothing but scatterers
whose density is zero. Even a perfectly crystalline structure containing
holes would give rise to the background scattering just as in the case of
perfect mixed crystal. Therefore, for convenience of interpreting the dif-
fraction diagrams in the unified theory two types of distortion were intro-
duced. Distortion of the first kind is produced by thermal vibrations, holes,
mixture of different types of atoms, etc., in otherwise a perfect lattice. The
positions of the lattice points are not affected by such distortions. Distor-
tion of the second kind describes the fluctuations of the lattice points them-
selves. Both can be handled independently and necessay criteria to determine
these two types of distortions had been formulated before (see Refs. 1, 2).
The g(r)-function contains both these two kinds of distortions and to de-
termine the structural parameters we have to separate these two effects,
both of them being the final result of anharmonic vibration. Further, it
must be noted carefully that in the generalised lattice, the lattice vectors
themselves do not vary independently in the general case. Consequently,
locally fluctuating lattice as defined by Baer cannot produce an arbitrarily
distorted lattice. Moreover, it must not be forgotten that the same distribu-
tion function can describe the density distribution of any substance (including
“frozen” structures), which can be characterised as crystals, liquids or
amorphous matter, at least so far as their diffraction patterns are concerned,
depending on the value of o, i.e. the degree of disorder. Disordered structures
may arise from a variety of causes and in most structures it is not the dif-
fusion process which causes this disorder. Also the principal factor which
creates the disorder of the liquid state (at least near the melting point), is
not the diffusion process but large anharmonic lattice vibrations of the
crystals. Consequently, Baer’s method of derivation of the distribution
function Eq. (12) cannot be relevant for the distribution function character-
ising a generalised lattice for all possible cases. Nevertheless, it is reassuring
to find that the dynamic diffusion process also gives rise to a neighbour
statistics like Egs. (11) and (12).
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IV ANALYSIS OF RDF AND EVALUATION OF THE
STRUCTURAL PARAMETERS

From Egs. (11), (12) and (13) it would seem that if we can determine H,(r),
i.e. o by trial and error we would be able to obtain all the relevant information
required to analyse the RDF curves of primitive liquids. The positions of
r, and C, would be given by the corresponding crystal structure. But even
simple liquids are not primitive liquids due to presence of holes and fissures,
permitting diffusion process to occur, and the formation of aggregates of
micro-cluster of distorted crystallites (for the evidences see Ref. 3). Con-
sequently, in actual practice, if we do not introduce the distribution function
of macro-lattice P (r) and use only H,(r), we have to vary simultaneously
(starting from the corresponding crystal structure), all the parameters o, r,, C,
to get an accurate fit. One must try to fit the curves throughout the domain
and not merely in the region of one or two humps of the g(r)-function. We
have therefore used the method of least squares to fit the theoretical curve
with the experimental one. The departure at the tail of the theoretical curve
is due to the fact that for practical reasons only a few neighbours were taken
for the calculation. Even then sometimes, as in Argon I and 11, the first two
peaks did not agree very well. The introduction of intercluster distance
function P,(r) improved the fit considerably.}

One might think that since we have so many parameters to vary it is
not unexpected that surprisingly good agreement as shown in the curves
would be obtained. But it must be remembered that we are varying the param-
eters of the given crystal structure. A little trial would convince any sceptic
that there is not much freedom in our choice. Consequently, it may be
asserted that the parameters given in the relevant tables of this series of
papers really represent the essential features of the liquid state quite ade-
quately and satisfactorily.

(i) The methodology

Equation (1) shows that the function g(r) contains the smearing effects of
the distortion of the lattice as well as that of random thermal motions. Both
these effects determine the interaction zone of the g(r)-function, that means,
the distance at which it reaches its constant value pg. It is determined by
A?r of the function H,(r). We have therefore to obtain from this the dis-
persion A%a due to the lattice distortion and the dispersion A%s due to har-
monic thermal vibrations separately.

T For simple dense liquids it has been estimated that the average nearest neighbour distance
within a cluster is approximately 0.8 to 0.9 A shorter than the nearest neighbour of two adjacent
clusters.
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In general, the function z(x) reaches its constant value where the neigh-
bouring statistics along the direction a, is so smeared out that its width in
this direction of the lattice vector is equal to the average value of a,. In our
case the distorted lattice would extend up to the pth neighbour if

ry 2
n= (A—a) (14)
The linear dimension of the lattice is then given by
L=2A (15)

where |p;| = d A determines the interaction zone of the lattice. It should
be noted that the distance of the nth neighbour d, # nr, (r; denotes the
nearest neighbour distance), but depends on the structure. The g(r)-function,
however, does not give directly p, but only the domain determined by the
radial distance at which it reaches its constant value. This is due to the
background scattering caused by thermal vibrations, different types of
atoms as well as by the Z(b)-function. The humps of the g(r)-function
therefore cease to be detected at p.™, (p. < p)), neighbour such that

po~ gL ’ (16)
¢ Ar

where ¢ defines the so-called limiting ellipsoid of reflection at which humps
of reflections could not be distinguished clearly from the background in-
tensity. Detailed quantative analysis of the Z(b)-function had shown that if
we assume that in order to distinguish a reflection the ratio of the maximum
to the minimum of the reflection hump must attain at least a value 1- 1, then
&= 0.43 (see Refs. 1, 2). As was discussed in the Ref. 3, this value of ¢ quite
satisfactorily determined the observed numbers of reflections in the scattered
intensity diagrams of liquids.

From Eq. (16) we see that p, and the corresponding linear dimension of
the interaction zone L, of the g(r)-function can be easily calculated from
H,(r). But in order to determine p, (i.c. L), of Egs. (14) and (15) we must
calculate the distortion of the lattice positions themselves by separating
out the effects of thermal vibrations around the mean position of the lattice.
This is easily achieved by noting the relation (17)

H(r —ry) = Hfr — r;)* Hy(r) 17

where H(r — r,) denotes the normalized distribution function for the
neighbouring lattice whose most probable value is given by r, and H,(r)
that due to harmonic thermal vibrations around each atom. From Eq. (17)
it follows

Ala = A*r — A%s (18)
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A%a, A%s are the corresponding mean square fluctuations of H, and H,,.
A%s is calculated from Debye’s theory of specific heat (for details, see Ref. 3).

Hence all the relevant significant structural parameters reported in the
tables can be calculated from the proper analysis of the experimentally
obtained g(r)-function with the help of the unified kinematic theory of
diffraction.

V RESULTS

The RDF of argon at various temperatures and pressures obtained by
Eisenstein and Gringrich!! have been numbered according to these authors.
The particulars of the samples are noted in Table I. The data for Gringrich
I, II and IV were taken from Schmidt and Tompson.!? Others were taken
from the published graphs by Eisenstein and Gingrich. Only the sample
number VII is vapour. Others are liquids. All the samples were investigated
near the saturated vapour curve.

TABLE I

Temperature, pressure and density of
Eisenstein and Gingrich argon

T(°K) P(Atm) p(gm/cc)

I 84.25 0.8 1.401

II 91.8 1.8 1.365
v 126.7 183 [.10
\Y 144.1 377 0.87

VI 149.3 46.8 0.737

Vil 149.3 438 0.330

Table 11 gives the relevant structure parameters, and Table ITI the distances
r, of different neighbours and their coordination numbers C, as well as
the values of m, the number of convolutions. Figures 1, 2 and 3 show the
experimental values (+) and calculated values (—) as well as the distance
statistics of the various neighbours.

Argon I and argon II were also reported in the paper by Bagchi,® but the
fit (particularly for the first two neighbours) was not very good. It was
concluded that this was due to the presence of clusters. By incorporating
the first inter-cluster neighbour statistics the agreement became very satis-
factory. It is interesting to note that all liquid argon shows clustering effects,
but its vapour doesn’t.

For comparison, recent data on liquid argon at 84°K by neutron dif-
fractionreported by Yarnellet al.!® has also been analysed and is incorporated
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FIGURE 1 Gingrich Argon I with cluster. Experimental (+ + +) and calculated (

RDF by varying all parameters simultaneously. Neighbours (

) are also shown.
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FIGURE 2 Gingrich Argon Il and IV. Experimental (+ + +) and calculated ( ) RDF
by varying all parameters simultancously. Neighbours ( ) are also shown. Vertical scale
is shifted 15 units.
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FIGURE 3 Gingrich Argon V, VI and VIIL. Experimental (+ + +) and calculated (
RDF by varying all parameters simultaneously. Neighbours (
scale successively shifted by 5 units.
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) are also shown. Vertical
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in Table II. As in the case of the neutron diffraction data by Henshaw!'*
reported by Bagchi,® we find here also that neutrons agitate the atoms more
violently but the overall effect remains practically the same.

As expected, the density affects significantly only the coordination num-
bers. The effects of pressure and temperature separately could not be studied
quantitatively due to lack of systematic data. Such systematic data would be
useful for deriving the equations of state of the liquid.

We also analysed the X-ray diffraction data for the 13 samples of argon
near the critical region given by Mikolaj and Pings (see Ref. 12). The samples
are described in Table IV.

TABLE 1V

Temperature, pressure and density for Pings
Argon

Sample T (°K) p (gm/cc) P (Atm)

1 143 0.910 39.32
2 143 0.982 65.63
3 148 0.280 42.51
4 148 0.780 44.11
5 148 0.910 65.70
6 148 0.982 97.89
7 153 0.536 5272
8 153 0.780 61.76
9 153 0.910 91.89
10 158 0.536 62.31
11 163 0.280 55.52
12 163 0.536 72.01
13 163 0.780 98.39

Table V gives the structure parameters of all 13 curves and Table VI
the distances of neighbours and coordination numbers. The sum of squares
Y2 is also noted.

Figures 4, 5, 6 and 7 show the calculated and experimental curves of
RDF as well as neighbour statistics. In order to avoid clumsiness, only one
neighbour statistics belonging to the lowest curve is shown in some cases.

It is interesting to note that contrary to the liquid argon reported by
Gingrich, all the curves of liquid argon reported by Mikolaj and Pings seem
to be statistically homogeneous on the atomic scale.

The interaction zone of the g(r)-function decreases with temperature as
expected from the observed diffraction patterns. The fluctuation of the neigh-
bour statistics generally increases with the rise of temperature; but neverthe-
less remains finite, with about 10%-159% usually found for all the liquid
states.
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FIGURE 4 Mikolajand Pings Argon 1 and 2. Experimental ( + + +) and calculated (

RDF by varying all parameters simultaneously. Neighbours (
Vertical scale is shifted by 5 units.

)

) are also shown for 1.
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FIGURE 5 Mikolaj and Pings Argon 3, 4, 5 and 6. Experimental (+ + +) and calculated

(
for 3 and 4. Vertical scale shifted by 5 units.
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) RDF by varying all parameters simultaneously. Neighbours (

) are also shown
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FIGURE 6 Mikolaj and Pings Argon 7, 8 and 9. Experimental (+ + +) and calculated

{ ) RDF by varying all parameters simultaneously. Neighbours (
for 7 and 9. Vertical scale is shifted by 5 units.

) are also shown
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30.

FIGURE 7 Mikolajand Pings Argon 10, 11, 12 and 13. Experimental (+ + +) and calculated
( ) RDF by varying all parameters simultaneously. Neighbours ( ) are also shown
for 11 and 13. Vertical scales are shifted by 5 units.
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