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Structural Parameters of Inert Liquids 
Part II. Liquid Argon 
S. N. BAGCHI 
Physics Department, Concordia University, Montreal, Canada. 

and 

J. P. SUPPLE 
Compute1 Systems Ltd., Ottawa, Canada. 

(Received in jnul  form: Januury 19,1981) 

The published data on the radial distribution functions (RDF) of liquid argon at various 
temperatures and pressures have been analyzed on the basis of the Unified Kinematic Theory 
of Diffraction (see Hosemann & Bagchi),' by the method developed before ( B a g ~ h i ) . ~ . ~  The 
neighbour statistics, their coordination numbers and other useful relevant structural param- 
eters have been given in the tables. The experimentally obtained RDF curves are compared with 
the theoretical curves. These figures also show the neighbour statistics. For comparison, one 
sample of argon vapour near the saturated vapour curve is also analyzed in the same way. 

I INTRODUCTION 

In previous  publication^,^,^ radial distribution functions, 4nrZg(r), of inert 
liquids and of some simple liquid metals near their melting points as well as 
of solid copper just below its melting point obtained by various authors from 
X-ray and neutron diffraction studies have been analyzed by the method 
developed by one of the authors (see Ref. 2), on the basis of the unified 
kinematic theory of diffraction (see Ref. 1). 

All the RDF curves reported in the literature had been obtained from the 
inverse transform, Eq. (2), of the intensity function, Eq. (l), derived first by 
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2 S. N. BAGCHl A N D  J. P. SUPPLE 

Zernike & Prins.’ 

4nr2g(r) = 4.nr2p + 8nr u . i(u) sin(2nur) du (2) JOm 
Here u( = I bl = 2 sin O/L) is the magnitude of the reciprocal distance vector 
b and r is the distance vector 1xl.f is the average intensity function, 

and 

g(r) = Yo@) + P = P52(r) (4) 
E2(r) is the space-time average of the so-called pair-distribution function 
n2(r); R(V)  is the average number of atoms (or molecules) in the volume 
I/ and p is the average macroscopic density. I fo 1’ is the structure factor, 

1 Do l 2  denotes the Debye-Waller factor due to harmonic thermal vibrations 
of atoms. The symbol - - - -  means that the corresponding function is averaged 
over‘all directions of space. 

It was assumed that the published data on RDF had been obtained by 
taking necessary precautions and correcting adequately the observed 
scattered intensity to get the intensity function I(u) and in calculating 
its inverse transformation. Thus taking for granted that the function g(r) 
is accurate enough we have analyzed this function properly in order to get 
reliable structural parameters, adequate enough to describe the space-time 
averaged atomic distributions of the liquid state. 

For a theoretically correct analysis of g(r) one must first be aware of the 
inherent limitations of the Eq. (1) and of the physical meaning of g(r). But 
this would be possible only when we have the most comprehensive kinematic 
theory of diffraction which degenerates under special circumstances to all 
the conventional theories like Laue-Bragg-Debye-Waller theory for 
crystals, Zernike-Prins-Debye-Menke theory for liquids and the theories 
for gases and for amorphous matter developed by Debye, Warren, Guinier 
and others. The principal aim of the Unified Kinematic Theory’ was to 
develop such a theory. This theory not only achieved this goal but also 
revealed the connections between them and their domains of validity. 
Moreover, it achieved something more. It explained the diffraction diagrams 
of matter which cannot be classified so rigidly. In fact, this theory gives the 
expression for the intensity function for matter of any kind on the basis of a 
single fundamental concept, namely, that of generalized lattice. Optical 
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STRUCTURAL PARAMETERS OF INERT LIQUIDS 

diffraction patterns of many carefully prepared models, whose structural 
parameters were known previously, quantitatively verified the conclusions 
derived from this single unified theory (see Ref. 1). 

In order to realize the significance of the structural parameters of the 
liquids reported in this series of papers and to understand how they were 
derived theoretically from the g(r)-function, it would be necessary to men- 
tion here briefly the basic ideas of this unified theory. For a short exposition 
of this theory and to know how it led to the method used in this series of 
papers one should look to the Ref 2. The details of the actual evaluation of 
these parameters were reported in the paper.3 

3 

II OUTLINE OF THE UNIFIED KINEMATIC THEORY OF 
DI F F R ACT10 N 

For uny substance the intensity function I(b) and its inverse transform 
Q(x) are given by, in “Kinematic Theory,” (cf. also Refs. 6-9), 

I(b) = F ~ ( x ) .  9 p (  - X) ] ( 5 )  
Q(x> = g - ’ I ( b )  = P(x)*P(-x) = ~P(Y)P(X + Y ) ~ Z J ,  

The symbols 9, 5 - l  represent Fourier transformation and its inverse. 
* represents the symbol of convolution product. Q(x) is denoted as the 
convolution square of the density function p(x). Although Eq. (5) is exact, 
it does not become useful unless one can express p in a convenient form. 

In order to describe mathematically the density distribution of any 
substance conveniently one must generalize the concept of the ideal lattice 
and shall have to distinguish between a lattice and aggregates of lattices 
which may form again a macro-lattice in which the building blocks are the 
micro-lattices themselves. The fact that any substance is finite can also be 
conveniently expressed in terms of the lattice by introducing the shape (or 
stencil) function s(x) of Ewald. 

We define a generalized lattice as an indefinitely extended point-structure 
of weight unity with the origin at x = 0 by 

m 

which satisfies the following three conditions. 

= constant for all values of V 
A2u A 2 N ( V )  
- . - -  - 

I‘ N (  V )  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



4 S. N. BAGCHI AND J. P. SUPPLE 

u is the volume of the lattice cell obtained by joining the lattice point located 
at xk with its immediate neighbours by noniritersecting vectors. 

b) A’V = NA’u, ( N  9 1) (6b) 

This means that the volume of any lattice cell fluctuates independently. 
c) There is no correlation between cell volumes. The lattice cell them- 

selves, however, are arbitrarily distorted and the shape and size of a lattice 
cell varies in general from one lattice cell to the other quite arbitrarily. 
One can therefore describe this generalised lattice, which is now statistically 
homogeneous, with the help of only one normalized a priori statistics of the 
cell volumes, H(u)  3 H p 1 p 2 p 3 ( ~ ) .  The intensity function of a structure 
forming a generalized lattice is given by, (see Eq. (50) of Ref. 2), 

where 
1 2.M + M  

z(x) = Iim - 1 1 6(x - x, + x k )  
M - t m  m = l  k = l  

S(b) = ~ s ( x ) ;  D,(b) = 9 A 0 ( x ) ;  Z(b) = ~ z ( x )  
__ 

A ~ ( x )  = A,(x) = 6(x - A x p )  

P(x) = Po * [z(x) * 6(x - AX,)] . S(X) J 
ISI2 is called the shape factor. 6(x) is Dirac’s delta function. 

The distinctive and characteristic features of the diffraction pattern of 
any substance forming a single generalised lattice depend principally on 
the nature of the Z(b)-function. 

Also, the distance statistics z(x) of the generalised lattice whose Fourier 
transform is Z(b) is then given by 

p , = - m p 2 = - m  p 3 = - m  

H P I P z P 3 ( x )  denotes the normalized distribution function for the location of 
the pth cell whose mean position is given by 

(10) 
- 
x p  = PIS, + P2I2 + p 3 a 3  

p i s  are integers and Hk’s are the average values of the three fundamental 
lattice vectors. 

Ill THE NEIGHBOUR STATISTICS A N D  RDF 

In the case of “primitive” liquids, i.e., liquids containing no clusters, only 
one spherically symmetric coordination statistics, namely, the statistics of 
the first neighbour H ,  ( r ) ,  is enough to locate the position of the pth neighbour. 
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STRUCTURAL PARAMETERS OF INERT LIQUIDS 5 

It is given by (cf. Ref. 2), 

1 
H,(r) = ___ (Xcr2)3‘2 

The statistics of the distribution of the pth neighbour HJr) is consequently 
given by 

Here r p  denotes the distance of the centroid of the pth atom and rn the number 
of convolutions by which it is reached from the origin with the help of 
H l ( r ) .  The probability of the distribution of the nth neighbours is thus 

H,(r) = 4nr2g(r) = C H,(r) 
P 

.___.. - - -  -_..._ 

g(r)  = z(x) - S(x = 0) (134 

The summation is to be taken over all the atoms belonging to the given 
nth neighbour. It is determined by the coordination number C, ;  a2/2 = AZr 
denotes the mean-square fluctuation in any direction of the first neighbour 
statistics. It is evidently a measure of the dispersion of the distribution 
function. 

It might be noted that neither H,(r) nor H,(r) are Gaussian functions and 
the properties of H,,(r), i.e. of g(r), is obtained by the convolution products of 
Hl(r). Hence in order to obtain the (space-time averaged) distribution of 
atoms one must deconvolute the given g(r)-function. Consequently, it is 
obvious that the conventional method of analysis of RDF by putting Gaus- 
sian functions at the humps of the g(r)-function is neither mathematically 
nor physically correct. 

For densely packed micro-clusters g(r)-function, being the convolution 
square of the density function, would not differ significantly from that of a 
homogeneous structure. Consequently, it can be analysed with sufficient 
accuracy with the help of a single function H,(r) to give reliable structural 
parameters. Actual inhomogeneities (at the atomic level) are revealed by 
those properties like pressure and compressibility which are very sensitive 
to the presence of clusters. 

The presence of clusters can also be taken into account in the present 
methodology. For this, we have to introduce the distribution function 
P,(r) of the macro-lattice in which each of the clusters forms the building 
block, the “cell-element”, of the macro-lattice. 

It is interesting to note here that recently Baer” obtained an expression 
for g(r) similar to Eq. (13) from considerations of “structural diffusion:’ 
of a locally fluctuating lattice and using Fokker-Planck equation. This 
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6 S. N. BAGCHI AND J. P. SUPPLE 

concept of locally fluctuating lattice is very similar to that of generalised 
lattice, but not adequate enough to describe even an arbitrary homogeneous 
structure. A disordered lattice, from the point of view of dynamics, arises 
from anharmonic thermal vibrations of the perfectly crystalline lattice. It is 
known that anharmonic vibrations displace the equilibrium positions of 
atoms which in its turn can break up the lattice and can create holes in 
crystal lattice. Eventually, for large amplitudes of vibrations it gives rise to 
the liquid and to the amorphous state of the substance. Diffusion process is 
also really a result of the thermal motion. Unified Theory has taken account 
of all these factors which give rise to a generalised (distorted) lattice. From 
the standpoint of diffraction phenomena, unified theory shows that the 
three states (crystal, liquid and gas) of a substance can be looked upon as 
that of single generalised lattice structure. Holes are nothing but scatterers 
whose density is zero. Even a perfectly crystalline structure containing 
holes would give rise to the background scattering just as in the case of 
perfect mixed crystal. Therefore, for convenience of interpreting the dif- 
fraction diagrams in the unified theory two types of distortion were intro- 
duced. Distortion of the first kind is produced by thermal vibrations, holes, 
mixture of different types of atoms, etc., in otherwise a perfect lattice. The 
positions of the lattice points are not affected by such distortions. Distor- 
tion of the second kind describes the fluctuations of the lattice points them- 
selves. Both can be handled independently and necessay criteria to determine 
these two types of distortions had been formulated before (see Refs. 1, 2). 
The g(r)-function contains both these two kinds of distortions and to de- 
termine the structural parameters we have to separate these two effects, 
both of them being the final result of anharmonic vibration. Further, it 
must be noted carefully that in the generalised lattice, the lattice vectors 
themselves do not vary independently in the general case. Consequently, 
locally fluctuating lattice as defined by Baer cannot produce an arbitrarily 
distorted lattice. Moreover, it must not be forgotten that the same distribu- 
tion function can describe the density distribution of any substance (including 
“frozen” structures), which can be characterised as crystals, liquids or 
amorphous matter, at least so far as their diffraction patterns are concerned, 
depending on the value of a, i.e. the degree of disorder. Disordered structures 
may arise from a variety of causes and in most structures it is not the dif- 
fusion process which causes this disorder. Also the principal factor which 
creates the disorder of the liquid state (at least near the melting point), is 
not the diffusion process but large anharmonic lattice vibrations of the 
crystals. Consequently, Baer’s method of derivation of the distribution 
function Eq. (12) cannot be relevant for the distribution function character- 
king a generalised lattice for all possible cases. Nevertheless, it is reassuring 
to find that the dynamic diffusion process also gives rise to a neighbour 
statistics like Eqs. (1 1) and (12). 
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STRUCTURAL PARAMETERS O F  INERT LlQUlDS 7 

IV ANALYSIS OF RDF AND EVALUATION OF THE 
STR U CTU R AL PARA M ETE R S 

From Eqs. (l l) ,  (12) and (13) it would seem that if we can determine Hl(r), 
i.e. c( by trial and error we would be able to obtain all the relevant information 
required to analyse the RDF curves of primitive liquids. The positions of 
r,, and C ,  would be given by the corresponding crystal structure. But even 
simple liquids are not primitive liquids due to presence of holes and fissures, 
permitting diffusion process to occur, and the formation of aggregates of 
micro-cluster of distorted crystallites (for the evidences see Ref. 3). Con- 
sequently, in actual practice, if we do not introduce the distribution function 
of macro-lattice PI@) and use only H l ( r ) ,  we have to vary simultaneously 
(starting from the corresponding crystal structure), all the parameters a, r p ,  C ,  
to get an accurate fit. One must try to fit the curves throughout the domain 
and not merely in the region of one or two humps of the g(r)-function. We 
have therefore used the method of least squares to fit the theoretical curve 
with the experimental one. The departure at the tail of the theoretical curve 
is due to the fact that for practical reasons only a few neighbours were taken 
for the calculation. Even then sometimes, as in Argon I and 11, the first two 
peaks did not agree very well. The introduction of intercluster distance 
function P l ( r )  improved the fit considerably.? 

One might think that since we have so many parameters to vary it is 
not unexpected that surprisingly good agreement as shown in the curves 
would be obtained. But it must be remembered that we are varying the param- 
eters of the given crystal structure. A little trial would convince any sceptic 
that there is not much freedom in our choice. Consequently, it may be 
asserted that the parameters given in the relevant tables of this series of 
papers really represent the essential features of the liquid state quite ade- 
quately and satisfactorily. 

(i) The methodology 

Equation (1) shows that the function g(r )  contains the smearing effects of 
the distortion of the lattice as well as that of random thermal motions. Both 
these effects determine the interaction zone of the g(r)-function, that means, 
the distance at  which it reaches its constant value p. It is determined by 
A2r of the function Hl(r). We have therefore to obtain from this the dis- 
persion A2a due to the lattice distortion and the dispersion A’s due to har- 
monic thermal vibrations separately. 

For simple dense liquids it has been estimated that the average nearest neighbour distance 
within a cluster is approximately 0.8 to 0.9 A shorter than the nearest neighbour of two adjacent 
clusters. 
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8 S. N. BAGCHI AND J. P. SUPPLE 

In general, the function z(x) reaches its constant value where the neigh- 
bouring statistics along the direction ak is so smeared out that its width in 
this direction of the lattice vector is equal to the average value of ak. In our 
case the distorted lattice would extend up to the pth neighbour if 

2 

PI = (z) 
The linear dimension of the lattice is then given by 

L = 2 d A  (15) 
where ( p I (  = d A determines the interaction zone of the lattice. It should 
be noted that the distance of the nth neighbour d ,  # nr , ,  (rl denotes the 
nearest neighbour distance), but depends on the structure. The g(r)-function, 
however, does not give directly p1 but only the domain determined by the 
radial distance at which it reaches its constant value. This is due to the 
background scattering caused by thermal vibrations, different types of 
atoms as well as by the Z(b)-function. The humps of the g(r)-function 
therefore cease to be detected at pih, ( p ,  < p l ) ,  neighbour such that 

2 

P c  = & 2 ( 2 )  

where E defines the so-called limiting ellipsoid of reflection at which humps 
of reflections could not be distinguished clearly from the background in- 
tensity. Detailed quantative analysis of the Z(b)-function had shown that if 
we assume that in order to distinguish a reflection the ratio of the maximum 
to the minimum of the reflection hump must attain at least a value 1 . 1, then 
E = 0.43 (see Refs. 1, 2). As was discussed in the Ref. 3, this value of E quite 
satisfactorily determined the observed numbers of reflections in the scattered 
intensity diagrams of liquids. 

From Eq. (16) we see that pc and the corresponding linear dimension of 
the interaction zone L, of the g(r)-function can be easily calculated from 
Hl(r). But in order to determine p l  (i.e. L), of Eqs. (14) and (15) we must 
calculate the distortion of the lattice positions themselves by separating 
out the effects of thermal vibrations around the mean position of the lattice. 
This is easily achieved by noting the relation (17) 

H,( r  - r t )  = H,(r - r l )  * Hth(Y) (17) 
where H,(r  - r t )  denotes the normalized distribution function for the 
neighbouring lattice whose most probable value is given by rl  and Hth(r) 
that due to harmonic thermal vibrations around each atom. From Eq. (17) 
it follows 

A2a = A2r - A2s (18) 
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STRUCTURAL PARAMETERS OF INERT LIQUIDS 

A2a, A2s are the corresponding mean square fluctuations of H ,  and Hth. 
A2s is calculated from Debye's theory of specific heat (for details, see Ref. 3). 

Hence all the relevant significant structural parameters reported in the 
tables can be calculated from the proper analysis of the experimentally 
obtained g(r)-function with the help of the unified kinematic theory of 
diffract ion. 

9 

V RESULTS 

The RDF of argon at various temperatures and pressures obtained by 
Eisenstein and Gringrich' ' have been numbered according to these authors. 
The particulars of the samples are noted in Table I. The data for Gringrich 
I, I1 and IV were taken from Schmidt and Tompson.12 Others were taken 
from the published graphs by Eisenstein and Gingrich. Only the sample 
number VII is vapour. Others are liquids. All the samples were investigated 
near the saturated vapour curve. 

TABLE I 

Temperature, pressure and density of 
Eisenstein and Gingrich argon 

I 84.25 0.8 I .40 I 
I1 91.8 1.8 1.365 

IV 126.7 18.3 1.10 
V 144.1 37.7 0.87 

VI 149.3 46.8 0.737 
VII 149.3 43.8 0.330 

Table I1 gives the relevant structure parameters, and Table I11 the distances 
rn of different neighbours and their coordination numbers C ,  as well as 
the values of m, the number of convolutions. Figures 1, 2 and 3 show the 
experimental values (+) and calculated values (-) as well as the distance 
statistics of the various neighbours. 

Argon I and argon I1 were also reported in the paper by B a g ~ h i , ~  but the 
fit (particularly for the first two neighbours) was not very good. It was 
concluded that this was due to the presence of clusters. By incorporating 
the first inter-cluster neighbour statistics the agreement became very satis- 
factory. It is interesting to note that all liquid argon shows clustering effects, 
but its vapour doesn't. 

For comparison, recent data on liquid argon at 84°K by neutron dif- 
fraction reported by Yarnell et al.' has also been analysed and is incorporated 
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FIGURE 1 
RDF by varying all parameters simultaneously. Neighbours (-) are also shown. 
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FIGURE 2 Gingrich Argon I I  and IV. Experimental (+ + +) and calculated (-) RDF 
by varying all parameters simultaneously. Neighbours (-) are also shown. Vertical scale 
is shifted I5 units. 
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RDF by varying all parameters simultaneously. Neighbours (-) are also shown. Vertical 
scale successively shifted by 5 units. 
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in Table 11. As in the case of the neutron diffraction data by Henshaw14 
reported by B a g ~ h i , ~  we find here also that neutrons agitate the atoms more 
violently but the overall effect remains practically the same. 

As expected, the density affects significantly only the coordination num- 
bers. The effects of pressure and temperature separately could not be studied 
quantitatively due to lack of systematic data. Such systematic data would be 
useful for deriving the equations of state of the liquid. 

We also analysed the X-ray diffraction data for the 13 samples of argon 
near the critical region given by Mikolaj and Pings (see Ref. 12). The samples 
are described in Table IV. 

TABLE 1V 
Temperature, pressure and density for Pings 

Argon 

Sample T ( O K )  p (gmicc) P (Atm) 

I 
2 
3 
4 
5 
6 
7 

9 
10 
I I  
12 
13 

n 

143 
I43 

148 
148 
I48 
153 
I53 
153 

163 
163 
163 

148 

I 58 

0.910 
0.982 
0.280 
0.780 
0.910 
0.982 
0.536 
0.780 
0.9 10 
0.536 
0.280 
0.536 
0.780 

39.32 
65.63 
42.51 
44.1 I 
65.70 
97.89 
52.72 
61.76 
9 I .89 
62.3 1 
55.52 
72.01 
98.39 

Table V gives the structure parameters of all 13 curves and Table VI 
the distances of neighbours and coordination numbers. The sum of squares c' is also noted. 

Figures 4, 5, 6 and 7 show the calculated and experimental curves of 
RDF as well as neighbour statistics. In order to avoid clumsiness, only one 
neighbour statistics belonging to the lowest curve is shown in some cases. 

It is interesting to note that contrary to the liquid argon reported by 
Gingrich, all the curves of liquid argon reported by Mikolaj and Pings seem 
to be statistically homogeneous on the atomic scale. 

The interaction zone of the g(r)-function decreases with temperature as 
expected from the observed diffraction patterns. The fluctuation of the neigh- 
bow statistics generally increases with the rise of temperature; but neverthe- 
less remains finite, with about l0%-15% usually found for all the liquid 
states. 
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FIGURE 4 Mikolaj and Pings Argon 1 and 2. Experimental (+ + +)and calculated (-) 
RDF by varying all parameters simultaneously. Neighbours (-) are also shown for 1. 
Vertical scale is shifted by 5 units. 
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FIGURE 5 Mikolaj and Pings Argon 3, 4, 5 and 6. Experimental (+ + +) and calculated 
(-) RDF by varying all parameters simultaneously. Neighbours (-) are also shown 
for 3 and 4. Vertical scale shifted by 5 units. 
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FIGURE 6 Mikolaj and Pings Argon 7, 8 and 9. Experimental (+ + +) and calculated 
(-) RDF by varying all parameters simultaneously. Neighbours (-) are also shown 
for 7 and 9. Vertical scale is shifted by 5 units. 
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FIGURE 7 Mikolaj and Pings Argon 10, 1 I ,  12 and 13. Experimental (+ + +)and calculated 
(-) RDF by varying all parameters simultaneously. Neighbours (-) are also shown 
for I 1  and 13. Vertical scales are shifted by 5 units. 
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